Part Number Hot Search : 
D74LV2 52A1211 00TQI MBRS2 B80NF5 FDC602P FDMS86 A1220
Product Description
Full Text Search
 

To Download DWA-MKG-KL3-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  21/12/2017 v3.0 1 features: > high brightness surface mount led using thin film technology. > 120 viewing angle. > small package outline (lxwxh) of 3.2 x 2.8 x 1.8mm. > qualified according to jedec moisture sensitivity level 2. > compatible to ir reflow soldering. > environmental friendly; rohs compliance. > superior corrosion resistance > compliance to automotive standard; aec-q101. power domiled with its significant power in terms brightness, viewing angle and variety of application possibilities, power domiled data sheet: power domiled alingap : dwx-mkg ? 2005 domiled is a trademark of dominant opto technologies. all rights reserved. product specifcations are subject to change without notice. applications: > automotive: interior applications, eg: switches, telematics, climate control system, dashboard, etc. exterior applications, eg: turn signal, center high mounted stop light (chmsl), rear combination lamp (rcl). dominant opto technologies innovating illumination tm
2 dws-mkg-f3j2-1 DWA-MKG-KL3-1 dwa-mkg-k3m-1 dwy-mkg-jl3-1 part ordering number color viewing angle? luminous flux @ if = 50ma (lm) appx. 1.2 min. typ. max. optical characteristics at tj=25?c typ. (v) vf @ if = 50ma appx. 3.1 electrical characteristics at tj=25?c max. (v) v r @ i r = 10ua min. (v) part number dwx-mkg 2.25 12 2.65 unit absolute maximum ratings maximum value dc forward current peak pulse current; (tp 10s, duty cycle = 0.1) reverse voltage esd threshold (hbm) led junction temperature operating temperature storage temperature power dissipation (at room temperature) thermal resistance - real thermal resistance junction / ambient, r th ja real junction / solder point, r th js real - electrical thermal resistance junction / ambient, r th ja el junction / solder point, r th js el (mounting on fr4 pcb, pad size >= 16 mm 2 per pad) 70 100 12 2 125 -40 +115 -40 +125 200 300 90 240 65 ma ma v kv ?c ?c ?c mw k/w k/w k/w k/w min. (v) 1.90 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm super red, 632nm amber, 615m amber, 615m yellow, 587nm 120 120 120 120 3.22 8.20 9.35 6.30 5.10 10.70 13.90 9.35 7.15 13.90 18.10 13.90
3 21/12/2017 v3.0 dws; super red dwa; amber dwy; yellow group wavelength grouping at tj= 25?c wavelength distribution (nm) appx. 3.1 color full full w x y full x y z 627 - 639 612 - 624 612 - 616 616 - 620 620 - 624 586 - 595 586 - 589 589 - 592 592 - 595 alingap : dwx-mkg dominant opto technologies innovating illumination tm
4 vf bining (optional) forward voltage (v) appx. 3.1 vf @ if = 50ma v5a v5b v5c v5d v5e 1.90 ... 2.05 2.05 ... 2.20 2.20 ... 2.35 2.35 ... 2.50 2.50 ... 2.65 please consult sales and marketing for special part number to incorporate vf binning. 21/12/2017 v3.0 brightness group luminous flux appx. 1.2 (lm) luminous flux group at tj=25?c f3 g2 g3 h2 h3 j2 j3 k2 k3 l2 l3 m2 m3 3.22 ... 3.68 3.68 ... 4.20 4.20 ... 4.80 4.80 ... 5.50 5.50 ... 6.30 6.30 ... 7.15 7.15 ... 8.20 8.20 ... 9.35 9.35 ... 10.70 10.70 ... 12.20 12.20 ... 13.90 13.90 ... 15.80 15.80 ... 18.10 alingap : dwx-mkg dominant opto technologies innovating illumination tm
5 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm radiation pattern forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) forward current i f (ma) forward current i f (ma) relative luminous flux rel relative luminous flux vs forward current v / v (50ma) = f(i f ); t j = 25c forward current i f (ma) maximum current vs temperature i f =f(t) relative spectral emission rel = f(); t j = 25c; i f = 50ma relative luminous flux rel wavelength (nm) allowable forward current i f ( ma ) duty ratio, % allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) temperature t(c) 0. 2 70 90 80 0 60 50 40 30 20 0. 6 0. 4 1. 0 0. 8 10 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 relative luminous flux rel forward current i f forward current i f (ma) relative lumionous flux vs forward current i v /i v (50ma) = f(i f ); t j = 25c forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 yellow amber super red relative luminous flux rel relative spectral emission i rel = f( ); t j = 25c; i f = 30ma wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a t s 0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120 t a = ambient temperature t s = solder point allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 0.1 1 10 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 relative luminous flux rel forward current i f forward current i f (ma) relative lumionous flux vs forward current i v /i v (50ma) = f(i f ); t j = 25c forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 yellow amber super red relative luminous flux rel relative spectral emission i rel = f( ); t j = 25c; i f = 30ma wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a t s 0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120 t a = ambient temperature t s = solder point allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 0.1 1 10 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 relative luminous flux rel forward current i f forward current i f (ma) relative lumionous flux vs forward current i v /i v (50ma) = f(i f ); t j = 25c forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 yellow amber super red relative luminous flux rel relative spectral emission i rel = f( ); t j = 25c; i f = 30ma wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a t s 0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120 t a = ambient temperature t s = solder point allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 0.1 1 10 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 relative luminous flux rel forward current i f forward current i f (ma) relative lumionous flux vs forward current i v /i v (50ma) = f(i f ); t j = 25c forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 yellow amber super red relative luminous flux rel relative spectral emission i rel = f( ); t j = 25c; i f = 30ma wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a t s 0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120 t a = ambient temperature t s = solder point allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 0.1 1 10 100 relative luminous flux rel forward current i f (ma) maximum current vs temperature i f = f (t) temperature t( c) t a t s 0 10 20 30 40 50 60 70 80 0 20 40 60 80 100 120 t a = ambient temperature t s = solder point allowable forward current vs duty ratio
6 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm junction temperature t j (c) relative forward voltage ?v f (v) relative forward voltage vs junction temperature ?v f = v f - v f (25c) = f(t j ); i f =50ma junction temperature t j (c) relative luminious flux rel relative luminious flux vs junction temperature v/v (25c) = f(t j ); i f = 50ma junction temperature t j (c) relative wavelength ?dom(nm) relative wavelength vs junction temperature ?dom = dom - dom (25c) = f(t j ); if = 50ma -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 150 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -50 -30 -10 10 30 50 70 90 110 130 150 amber super red relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 50ma junction temperature t j (c) relative luminious flux rel relative luminious flux vs junction temperature i v /i v (25c) = f(t j ); i f = 50ma junction temperature t j (c) yellow -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 150 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -50 -30 -10 10 30 50 70 90 110 130 150 amber super red relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 50ma junction temperature t j (c) relative luminious flux rel relative luminious flux vs junction temperature i v /i v (25c) = f(t j ); i f = 50ma junction temperature t j (c) yellow -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 -50 -30 -10 10 30 50 70 90 110 130 150 amber super red -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 -50 -30 -10 10 30 50 70 90 110 130 150 relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 50ma ? cx, ? cy chromaticity coordinate shift vs junction temperature ? cx, ? cy = f(t j ); i f = 50ma junction temperature t j (c) junction temperature t j (c) yellow redundant
7 domiled tm ? alingap : dwx-mkg package outlines material material lead-frame package encapsulant soldering leads cu alloy with au plating high temperature resistant plastic, ppa silicone resin au plating 21/12/2017 v3.0 note : primary thermal path is through anode lead of led package. alingap : dwx-mkg dominant opto technologies innovating illumination tm power domiled ? allngap : dwx-mkg package outlines 7 domiled tm ? alingap : dwx-mkg package outlines material material lead-frame package encapsulant soldering leads cu alloy with au plating high temperature resistant plastic, ppa silicone resin au plating 31/10/2016 v1.0 note : primary thermal path is through anode lead of led package. alingap : dwx-mkg dominant opto technologies innovating illumination tm
8 recommended solder pad 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm 8 recommended solder pad 31/10/2016 v1.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm
9 taping and orientation ? reels come in quantity of 2000 units. ? reel diameter is 180 mm. 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm
10 packaging specifcation 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm 08/12/2016 v7.0 13 packaging specifcation ingan warm white: ddf-ljg dominant opto technologies innovating illumination tm
11 21/12/2017 v3.0 packaging specifcation average 1pc power domiled 1 completed bag (2000pcs) 0.034 190 10 weight (gram) cardboard box dimensions (mm) empty box weight (kg) super small small medium large for power domiled reel / box cardboard box size weight (gram) 0.034 240 10 dominant tm moisture sensitivity level moisture absorbent material + moisture indicator the reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag reel barcode label label (l) lot no : lotno (p) part no : partno (c) cust no : partno (g) grouping : group (q) quantity : quantity (d) d/c : date code (s) s/n : serial no dominant opto technologies ml temp 2 260?c rohs compliant made in malaysia 325 x 225 x 190 325 x 225 x 280 570 x 440 x 230 570 x 440 x 460 0.38 0.54 1.46 1.92 9 reels max 15 reels max 60 reels max 120 reels max alingap : dwx-mkg dominant opto technologies innovating illumination tm
12 time (sec) 0 50 100 150 200 300 250 225 200 175 150 125 100 75 50 25 275 temperature (?c) classifcation refow profle (jedec j-std-020c) ramp-up 3?c/sec max. 255-260?c 10-30s 60-150s ramp- down 6?c/sec max. preheat 60-180s 480s max 217?c recommended pb-free soldering profle 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm
13 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm appendix 1) brightness: 1.1 luminous intensity is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 1.2 luminous fux is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 2) color: 2.1 chromaticity coordinate groups are measured with an internal reproducibility of 0.005 and an expanded uncertainty of 0.01 (accordingly to gum with a coverage factor of k=3). 2.2 dominant wavelength is measured with an internal reproducibility of 0.5nm and an expanded uncertainty of 1nm (accordingly to gum with a coverage factor of k=3). 3) voltage: 3.1 forward voltage, vf is measured with an internal reproducibility of 0.05v and an expanded uncertainty of 0.1v (accordingly to gum with a coverage factor of k=3).
revision history note all the information contained in this document is considered to be reliable at the time of publishing. however, dominant opto technologies does not assume any liability arising out of the application or use of any product described herein. dominant opto technologies reserves the right to make changes to any products in order to improve reliability, function or design. dominant opto technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of dominant opto technologies . page - 2, 3 2, 5 date of modifcation 31 oct 2016 22 au g 20 17 21 dec 2017 14 21/12/2017 v3.0 alingap : dwx-mkg dominant opto technologies innovating illumination tm subjects initial release add new partno: DWA-MKG-KL3-1 update wavelength grouping for super red update thermal resistance update thermal resistance graph
about us dominant opto technologies is a dynamic company that is amongst the worlds leading automotive led manu - facturers. with an extensive industry experience and relentless pursuit of innovation, dominants state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. more in - formation about dominant opto technologies, a iso/ts 16949 and iso 14001 certifed company, can be found under http://www.dominant-semi.com. please contact us for more information: dominant opto technologies sdn. bhd lot 6, batu berendam, ftz phase iii, 75350 melaka, malaysia. tel: +606 283 3566 fax: +606 283 0566 e-mail: sales@dominant-semi.com alingap : dwx-mkg dominant opto technologies innovating illumination tm


▲Up To Search▲   

 
Price & Availability of DWA-MKG-KL3-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X